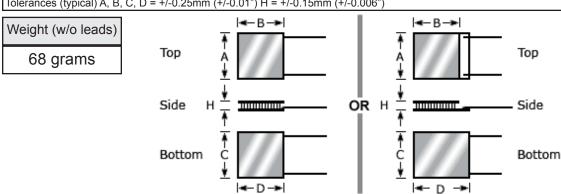


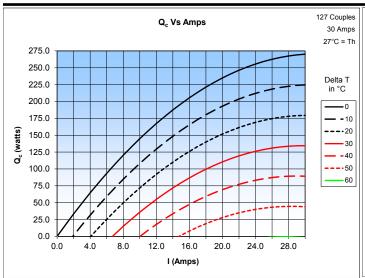
Part #	I _{max} (Amps)	Q _{max} (Watts)	V _{max} (Volts)	DT _{max} (°C)	T _{max} (°C)
12711-5P31-30CZ	30.0	270	15.2	62°C	125°C

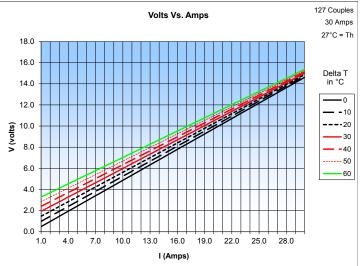
Lapped

Custom Options:

Call for custom wire types and other custom options.


Notes:


Typical power input is 40% to 80% of I_{max} Maximum Waste Heat (exiting the hot side) at 100% input power, $I=I_{max}$, $V=V_{max}$ is;


$$(I_{max} * V_{max}) + Q_{max} = 726.0 \text{ watts}$$

Use of a properly sized heat sink or water block is required to remove waste heat.

A B C D H H	1	
	Н	
mm in mm in mm in mm in mm	in	
62.0 2.44 62.0 2.44 62.0 2.44 62.0 2.44 NA NA 3.8	.150	

Charts above are tested at a T_H =27°C. At higher T_H temperatures, TEC resistance increases. Since V=1*R, expect amperage to decrease for a given fixed voltage.